Mark schemes

## Q1.

## Alternative method 1

$60 \div 2$ or 30
exterior angle
may be on diagram
$360 \div$ their 30

12

## Alternative method 2

$$
\begin{aligned}
\frac{360-60}{2} \text { or } \frac{300}{2} & \text { or } 150 \\
& \text { interior angle } \\
& \text { may be on diagram }
\end{aligned}
$$

```
360 % (180 - their 150)
or 360 \div 30
```

12

## Alternative method 3

$$
\begin{aligned}
\frac{360-60}{2} \text { or } \frac{300}{2} & \text { or } 150 \\
& \text { interior angle } \\
& \text { may be on diagram }
\end{aligned}
$$

$180 \times(n-2)=$ their $150 \times n$
or $180 n$ - their $150 n=360$
or $30 n=360$

> oe equation

Q2.
(a) 180

Exact answer
(b) 6
(c) 135

## Exact answer

B1

Q3.
$(180-40) \div 2$
or $180-(40 \times 2)$
(40 and) 40 and 100
Either order
(40 and) 70 and 70
SC1 Two pairs of angles totalling 140

Q4.
(Exterior angle $=$ ) $360 \div 6(=60)$

180-60

## Alternative method 1

(interior angles =) $4 \times 180$
$8 \times 90$
$720 \div 6$

## Alternative method 2

Showing the hexagon can be split into equilateral triangles and one angle of 60 shown or stated

Showing $60+60$ at one vertex

Q5.
$360 \div 20$ or $20 \times 18=360$
oe

## Additional Guidance

If using interior angle method, must get as far as $360 \div 20$ for M1

Q6.

$$
4 x+2 x+90=180
$$

oe
60 and/or 30 in correct place on diagram

$$
\begin{aligned}
& 4 x+2 x=180-90 \\
& \text { or } 6 x=90 \\
& \text { or } 4 x=60 \\
& \text { or } 2 x=30
\end{aligned}
$$

oe
Collecting terms

15

Q7.
$3 x-38=2 x+15$
oe

$$
3 x-2 x=15+38
$$

Collects terms oe

53

Q8.

## Alternative method 1 of 2

$$
\begin{aligned}
& P A B=51 \\
& \text { or } P A D=51 \\
& \text { or } A P C=180-51 \\
& \text { or } A P C=129
\end{aligned}
$$

```
ABP=180-51-their 51
or }ABP=180-10
or ABP = 78
or }ADC=180- their 51- their 51
```

```
ADC=180-102
ADC=78
```

$$
\begin{aligned}
& P A B=51 \text { and } P A D=51 \\
& \text { or } B A D=102
\end{aligned}
$$

```
\(B C D=180-\) their 78
or \(B C D=360\) - their 129 - their 51 - their 78
or \(B C D=360-258\)
or \(B C D=102\)
    eg \(B C D=(360-2 \times\) their 78\() \div 2\)
or \(4 x=180\) - their 78
or \(4 x=360-\) their 129 - their 51 - their 78
or \(4 x=360-258\)
or \(4 x=102\)
    or \(4 x=(360-2 \times\) their 78\() \div 2\)
or \(102 \div 4\)
    oe
```

M1dep
25.5

## Alternative method 2 of 2

```
ABC=180-3x-x
or ABC=180-4x
or APC=180-51
or APC=129
```

$P A B=2 x$
or $A P B=2 x$
or $2 x=51$
$51 \div 2$
25.5

Additional Guidance
Angles must be labelled or shown on the diagram

Q9.
$180-56-56$ or 68
$2 x+56+56+90=360$
oe

$$
\begin{aligned}
& 360-56-56-90 \\
& 2 x=360-112-90
\end{aligned}
$$

$(180-$ their 22$) \div 2$
or (360-56-56-90) $\div 2$
$2 x=158$

79

Q10.
(a) 40
(b) $360 \div$ their 40

9
A1ft

Q11.
$w+40=72$

> May be on diagram
( $w=$ ) 32 seen
$2 w=64$ or $2 w=2 \times$ their 32 or third angle $=72$ or $2 w+t+72=180$ oe
$180-72-64$ or $180-72-$ their $32 \times 2$
oe $108-64$

Fully correct table
B1 for each correct decision in a row

## Q12.

## Additional Guidance

|  | Must be true | Cannot be true | Might be true |
| :--- | :---: | :---: | :---: |
| The triangle is <br> equilateral |  |  | $\checkmark$ |
| The triangle has at <br> least one other acute <br> angle | $\checkmark$ |  |  |
| The triangle is <br> right-angled |  |  | $\checkmark$ |
| The other two angles <br> are each less than $60^{\circ}$ |  | $\checkmark$ |  |

Mark intention if crosses used
eg if a cross is the only mark in a row assume that is the answer
More than one tick in a row is choice for that decision

Q13.
$D=260$
May be on diagram
$A=30$
May be on diagram
$360-(30+$ their $260+$ their 30$)$
oe

40
ft their 260 and 30

## Alternative Method

$S=50($ and $R=150)$
$B 1$ for $R=150$
May be on diagram

180 - (90 + their 50 )
oe

40
ft their 150 and 50

## Additional Guidance

## MARK THE BEST EFFORT

Beware of 30 , this must be linked to angle A unless clear method shown, e.g. $90-$ $60=30$ is clearly angle A

Answer 40 from no working is zero marks
No ft from $R$ to $S$
Beware of an incorrect method for finding S, e.g.
$R=160$ and $S=50$ scores B0

## Q14.

octagon

## Q15.

$x+115+140+50=360$
or $360-(115+140+50)$
or 360-305
oe
$(x=) \quad 55$
$(x+15=) \quad 70$
ft their $55+15$
$180-$ their $125=55$
Angles must add up to 180
B1 ft
Isosceles
Must see three angles for the triangle

## Additional Guidance

'their' 55 must come from a calculation.
$55,70,55$ isosceles
M1 A1 B1 B1 Q1
$55,80,45$ (adds up to 180) scalene
M1 A1 B0 B1ft Q1ft
$360-305=65$
$65,80,35$ (adds up to 180) scalene
M1 A0 B1ft B1ft Q1ft

